
FPGA設(shè)計異步復(fù)位同步釋放有講究
發(fā)布時間:2017-01-23 責(zé)任編輯:susan
【導(dǎo)讀】異步復(fù)位同步釋放,首先要說一下同步復(fù)位與異步復(fù)位的區(qū)別。同步復(fù)位是指復(fù)位信號在時鐘的上升沿或者下降沿才能起作用,而異步復(fù)位則是即時生效,與時鐘無關(guān)。異步復(fù)位的好處是速度快。再來談一下為什么FPGA設(shè)計中要用異步復(fù)位同步釋放。
復(fù)位信號的釋放是有講究的:
我們知道,DFF的D端和clk端之間時序關(guān)系是有約束的,這種約束我們通過setup time和hold time來 check。即D端的data跳變的時刻要與clk端的時鐘上升沿(或者下降沿)跳變要錯開,如果這兩個跳變撞到一起,我們無法保證DFF能夠sample到正確的data,這時候不滿足setup/hold time要求,就會發(fā)生亞穩(wěn)態(tài),我們sample到的data可能是不穩(wěn)定的中間態(tài)的值,并不是我們原本想要的data。

與此類似,異步復(fù)位端與clk端之間也存在著類似的時序約束關(guān)系,為了準確穩(wěn)定地sample到異步復(fù)位端的reset信號,我們要求reset信號在clk上升沿(或者下降沿)跳變的前后一段時間內(nèi)保持穩(wěn)定,不要跳變。clk跳變沿之前必須保持穩(wěn)定的最短時間叫做recovery time,clk跳變沿之后需要保持穩(wěn)定的最短時間叫做removal time。如果在此時間窗口內(nèi)reset信號發(fā)生跳變,不確定reset到底有沒有釋放成功(類似setup+hold時間窗口內(nèi),data跳變,發(fā)生亞穩(wěn)態(tài),sample到的值是不穩(wěn)定的中間態(tài)值)。
在IC設(shè)計過程中我們是會check recovery和removal time的,如果不滿足,我們會通過布局布線的調(diào)整(后端的調(diào)整)讓電路滿足這個條件(實質(zhì)就是讓reset跳變沿和clk跳變沿錯開);但是對于FPGA設(shè)計而言,我們一般不采用異步釋放的方法,因為FPGA的布局布線可以調(diào)整的空間不大,相對于IC設(shè)計,F(xiàn)PGA后端的布局布線基本上是tool自己搞定,所以我們很難調(diào)整布局布線以滿足這個條件,所以我們一般就會直接用異步復(fù)位同步釋放的方法來讓reset跳變沿和clk跳變沿錯開。
最后再說一下同步數(shù)字電路的setup/hold timing check的實質(zhì)。
同步數(shù)字電路的基本單元就是兩級DFF,中間是一堆組合邏輯,data就是在clk一拍一拍的控制下,逐漸向后面?zhèn)鬟f,當然,在傳遞的過程中,通過組合邏輯實現(xiàn)數(shù)據(jù)的處理與轉(zhuǎn)換;但是物理世界里面,組合邏輯一定是有毛刺的,比如說data通過一系列的處理之后準備通過DFF傳遞到下一個單元的時候,你怎么能保證第二級DFF采到的值是處理完畢穩(wěn)定可靠的data,而不是還處于中間態(tài)的data??。ㄅe個例子,假設(shè)我們這里的data是一個8bit的bus信號,處理之前是1111_0000,通過組合邏輯處理完之后我們期望變成1111_1111;我們知道后面4個bit由0變1是需要時間的,由于布局布線的緣故,這4bit不可能在同一個時刻齊刷刷的同時由0變1,肯定是有的bit先變1,有的bit后變1;也就是在由1111_0000變成1111_1111的過程中,可能會存在1111_1000/1111_1100/1111_1101/...等等這樣的中間態(tài)數(shù)據(jù),我們不能在data還處于中間態(tài)的時候就去sample它,否則得到的不是我們預(yù)期的值,會引起整個芯片的邏輯錯誤)。
我們實際上是通過setup/hold time來保證的,即:如果電路中所有DFF的setup/hold time都能夠滿足,表示data到達D端的時間比clk跳變沿時刻超過了setup時間(反之,如果data在setup+hold時間窗口內(nèi)還在變化,一定會有setup/hold timing vio),這樣,我們通過check 所有DFF的setup/hold timing來間接地保證所有DFF采到的值都是經(jīng)過組合邏輯處理并且處理完畢之后穩(wěn)定可靠的值。(更確切的說,通過hold timing check來保證sample到的值是經(jīng)過組合邏輯處理之后的值而不是上一筆的data,通過setup time來保證sample到的是經(jīng)過組合邏輯處理完畢之后并且穩(wěn)定下來的值)。
特別推薦
- 5mW待機功耗突圍戰(zhàn)!AC-DC電源待機功耗逼近物理極限
- 華為、地平線、大眾等企業(yè)引領(lǐng)汽車技術(shù)變革,來AMTS 2025了解更多汽車行業(yè)發(fā)展前景
- 關(guān)稅風(fēng)暴下車企們的生存法則:漲價+清庫+轉(zhuǎn)產(chǎn)三軸突圍
- 從智能座艙到駕控大腦:AMTS帶你暢游上海車展黑科技海洋
- 智能無線工業(yè)傳感器設(shè)計完全指南
- 硅光技術(shù)新突破:意法半導(dǎo)體PIC100開啟數(shù)據(jù)中心高能效時代
- 新唐科技以AI、新能源、汽車電子新品引領(lǐng)行業(yè)未來,巡回發(fā)布會完美收官!
技術(shù)文章更多>>
- 新唐科技以AI、新能源、汽車電子新品引領(lǐng)行業(yè)未來,巡回發(fā)布會完美收官!
- 硅光技術(shù)新突破:意法半導(dǎo)體PIC100開啟數(shù)據(jù)中心高能效時代
- 從智能座艙到駕控大腦:AMTS帶你暢游上海車展黑科技海洋
- 關(guān)稅風(fēng)暴下車企們的生存法則:漲價+清庫+轉(zhuǎn)產(chǎn)三軸突圍
- 華為、地平線、大眾等企業(yè)引領(lǐng)汽車技術(shù)變革,來AMTS 2025了解更多汽車行業(yè)發(fā)展前景
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索