-
如何在設計GTO逆變器時合理設計緩沖電路參數
緩沖電路參數值直接影響GTO的關斷性能及整個GTO逆變器的工作性能。因此如何在設計GTO逆變器時合理設計緩沖電路參數,便成為重要的問題。
2021-08-27
GTO逆變器 緩沖電路
-
解析功率MOSFET的驅動電感性負載
文章介紹了采用表面貼裝封裝設計LITTLEFOOT?功率MOSFET的過程。它描述了功率MOSFET的驅動電感性負載,公共柵極驅動器以及磁盤驅動器應用以及公共柵極級的驅動電容性負載。
2021-08-27
功率MOSFET 驅動電感
-
【技術大咖測試筆記系列】之四:使用數字萬用表測量電源瞬態(tài)恢復時間
簡單地說,瞬態(tài)恢復時間是施加負載后電源恢復到設定電平所需的時間長度。不設計電源的人一般會想當然,我們在工作中不管用的是哪種電路,可能只有在電源性能劣化到影響工作時才會注意到它。電源和人有點兒像,如果你問的問題比他知道的多,那么他可能會達不到你的預期。
2021-08-27
數字萬用表 電源瞬態(tài)恢復時間
-
小小蜂鳴器,驅動電路可大有學問
蜂鳴器是電路設計中常用的器件,廣泛用于工業(yè)控制報警、機房監(jiān)控、門禁控制、計算機 等電子產品作預警發(fā)聲器件,驅動電路也非常簡單,然而很多人在設計時往往隨意設計,導 致實際電路中蜂鳴器不發(fā)聲、輕微發(fā)聲和亂發(fā)聲的情況發(fā)生。
2021-08-26
蜂鳴器 驅動電路
-
什么樣的PCB才能承受住100 A的電流?
通常的PCB設計電流都不會超過10 A,甚至5 A。尤其是在家用、消費級電子中,通常PCB上持續(xù)的工作電流不會超過2 A。但是最近要給公司的產品設計動力走線,持續(xù)電流能達到80 A左右,考慮瞬時電流以及為整個系統(tǒng)留下余量,動力走線的持續(xù)電流應該能夠承受100 A以上。
2021-08-25
PCB 電流
-
使用噪音濾波器的音頻線解決指南
若不采取對策,智能手機的揚聲器、耳機等音頻線等線路中會輻射出電磁噪音。該噪音會對內置天線造成干擾,從而使接收靈敏度降低,因此一般情況下會插入片式磁珠抑制噪音。然而,片式磁珠雖然可有效抑制噪音,但對于音頻線可能會造成聲音失真等問題。
2021-08-25
噪音濾波器 音頻線
-
如何提高示波器的測量分辨率
在我們日常使用示波器的時候,有時候會需要進行高分辨率測量,這個時候就可以把數字示波器看作一個整體系統(tǒng),充分利用這套系統(tǒng)來改善測量結果,而不僅僅只是將數字示波器當成簡單的模數轉換器。
2021-08-25
示波器 穩(wěn)壓器
-
基于壓電主動傳感技術中功率放大器的應用
本實驗將利用壓電陶瓷傳感器,通過模型試驗,對基于時間反演技術的螺栓球節(jié)點連接區(qū)健康狀態(tài)監(jiān)測方法進行驗,時間反演聚焦信號的峰值只與該信號在結構上傳遞時所經過的傳播路徑的傳遞函數有關,當螺栓球節(jié)點內部螺栓發(fā)生損壞或未安裝到位(受損狀態(tài))時,相當于傳遞函數發(fā)生改變,聚焦信號的峰值也...
2021-08-24
功率放大器 壓電主動傳感技術
-
如何解決高頻信號傳輸領域存在的阻抗失配現象
在高頻領域,信號或電磁波必須沿著具有均勻特征阻抗的傳輸路徑傳播。一旦阻抗失配或不連續(xù)現象,一部分信號被反射回發(fā)送端,剩余部分電磁波將繼續(xù)被傳輸到接收端。
2021-08-24
高頻信號傳輸 阻抗失配
- 800V牽引逆變器:解鎖電動汽車續(xù)航與性能躍升的工程密鑰
- 熱敏電阻技術全景解析:原理、應用與供應鏈戰(zhàn)略選擇
- 如何破解導航系統(tǒng)中MEMS IMU數據同步困局?
- 非線性響應破局!新一代eFuse跳變曲線如何提升能效?
- 電源測量的導線布局如何影響測量精度?
- 小信號放大新思路,低成本儀表放大器的差分輸出設計
- 隔離SEPIC轉換器如何破解反激式拓撲的EMI與調節(jié)困局?
- 從實驗室到市場:碳化硅功率器件如何突破可靠性瓶頸
- 維科杯·OFweek2025年度評選:揭秘工業(yè)自動化及數字化轉型“領航者”,誰將脫穎而出?
- 尋找傳感器界的“隱形王者”!維科杯·OFweek 2025年度評選等你來戰(zhàn)
- 厚膜電阻在通信基礎設施中的關鍵應用與技術突破
- 碳膜電位器技術解析:從原理到選型與頭部廠商對比
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall